高级计量经济学(二)
本文最后更新于:2022年4月24日 下午
笔记导航:
CHAPTER 2 GENERAL REGRESSION ANALYSIS 一般回归分析
2.1 Conditional Probability Distribution
假设$Z=\left(Y, X^{\prime}\right)^{\prime}$是一个随机向量,$E\left(Y^{2}\right)<\infty$, $Y$是一个标量,$X$是一个$(k+1)\times1$的向量。 $f(x,y)$为联合概率密度分布(probability density function, PDF),则对于$X$的边缘概率分布为:
给定$X$,对于$Y$的条件概率密度分布为:
则条件概率分布能够完整表示出$Y$依赖$X$的程度。根据$f_{Y | X}(y | x)$可以计算以下:
- The conditional mean
- the conditional variance
- the conditional skewness (刻画Y分布是否对称)
- the conditional kurtosis (刻画有没有heavy tail)
- the $\alpha$-conditional quantile $Q(x,\alpha)$ (分位数):
Note that when $\alpha=0.5, Q(x, 0.5)$is the conditional median, which is the cutoff point or threshold that divides the population into two equal halves, conditional on $X = x$.
A mathematical model (i.e., an assumed functional form with a finite number of unknown parameters) for a conditional moment is called an econometric model for that conditional moment.
2.2 Regression Analysis
Deffnition 2.1 [Regression Function]: The conditional mean $E(Y|X)$ is called a regression function of $Y$ on $X$:
Lemma 2.1 :$E[E(Y|X)=E(Y)]$
Definition 2.2[MSE]: Suppose function $g(X)$ is used to predict $Y$. Then the mean squared error of function $g(X)$ is defined as:
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!